Involvement of the mismatch repair system in temozolomide-induced apoptosis.

نویسندگان

  • S D'Atri
  • L Tentori
  • P M Lacal
  • G Graziani
  • E Pagani
  • E Benincasa
  • G Zambruno
  • E Bonmassar
  • J Jiricny
چکیده

Postreplicative mismatch repair plays a major role in mediating the cytotoxicity of agents generating O6-methylguanine in DNA. We previously showed that a methylating antitumor triazene compound, temozolomide, induces apoptosis and that the persistence of O6-methylguanine in DNA is required to trigger the process. We wanted to test whether the latter apoptotic signal is dependent on a functional mismatch repair system. To this end, we used two human lymphoblastoid cell lines (i.e., the mismatch repair-proficient TK6 line and its mismatch repair-deficient subline MT1) that are both deficient in O6-methylguanine repair. Temozolomide treatment of TK6 cells brought about efficient cell growth inhibition, G2/M arrest, and apoptosis, as indicated by the results of cytofluorimetric analysis of 5-bromo-2'-deoxyuridine incorporation and DNA content and evaluation of DNA fragmentation. The drug treatment resulted also in the induction of p53 and p21/waf-1 protein expression. In contrast, MT1 cells were highly resistant to the drug and no p53 and p21/waf-1 induction was observed. Importantly, we could show that MT1 cells are not deficient in the p53-dependent apoptosis pathway; treatment with etoposide, a topoisomerase II inhibitor, resulted in p53 and p21/waf-1 protein expression and apoptosis in both cell lines. In conclusion, we demonstrate the existence of a link between a functional mismatch repair system and the trigger of apoptosis in cells exposed to clinically relevant concentrations of temozolomide. The results also suggest that p53 induction in response to O6-guanine methylation involves the mismatch repair system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mre11/Rad50/Nbs1 complex interacts with the mismatch repair system and contributes to temozolomide-induced G2 arrest and cytotoxicity.

The chemotherapeutic agent temozolomide produces O(6)-methylguanine (O6MG) in DNA, which triggers futile DNA mismatch repair, DNA double-strand breaks (DSB), G(2) arrest, and ultimately cell death. Because the protein complex consisting of Mre11/Rad50/Nbs1 (MRN complex) plays a key role in DNA damage detection and signaling, we asked if this complex also played a role in the cellular response t...

متن کامل

DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system.

The mammalian mismatch repair (MMR) system has been implicated in activation of the G(2) checkpoint induced by methylating agents. In an attempt to identify the signaling events accompanying this phenomenon, we studied the response of MMR-proficient and -deficient cells to treatment with the methylating agent temozolomide (TMZ). At low TMZ concentrations, MMR-proficient cells were growth-inhibi...

متن کامل

Minor Changes in Expression of the Mismatch Repair Protein MSH2 Exert a Major Impact on Glioblastoma Response to Temozolomide.

Glioblastoma (GBM) is often treated with the cytotoxic drug temozolomide, but the disease inevitably recurs in a drug-resistant form after initial treatment. Here, we report that in GBM cells, even a modest decrease in the mismatch repair (MMR) components MSH2 and MSH6 have profound effects on temozolomide sensitivity. RNAi-mediated attenuation of MSH2 and MSH6 showed that such modest decreases...

متن کامل

Survival and Death Strategies in Glioma Cells: Autophagy, Senescence and Apoptosis Triggered by a Single Type of Temozolomide-Induced DNA Damage

Apoptosis, autophagy, necrosis and cellular senescence are key responses of cells that were exposed to genotoxicants. The types of DNA damage triggering these responses and their interrelationship are largely unknown. Here we studied these responses in glioma cells treated with the methylating agent temozolomide (TMZ), which is a first-line chemotherapeutic for this malignancy. We show that upo...

متن کامل

Role of wild-type p53 on the antineoplastic activity of temozolomide alone or combined with inhibitors of poly(ADP-ribose) polymerase.

The DNA repair enzyme O6-alkylguanine DNA-alkyltransferase (OGAT) and a deficient mismatch repair system play a critical role in the resistance to chemotherapeutic agents that generate adducts at the O6-position of guanine. However, DNA adducts different from O6-methylguanine might be also involved in cytotoxicity induced by methylating agents. Because the loss of p53 function is generally asso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 54 2  شماره 

صفحات  -

تاریخ انتشار 1998